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The results of some strip-model calculations of m~ scattering are presented. In these calculations, uni-

tarity is imposed by means of the Mandelstam iteration. This procedure has the advantage that the output
trajectories and residues (including their imaginary parts) may be computed above as well as below thresh-
old; this is at present not feasible in calculations using the E/D technique. First, a bootstrap calculation
of the p trajectory is carried out, neglecting Pomeranchuk exchange. The extra requirement of self-con-
sistency above threshold is very strict, but a solution with satisfactory consistency between —1 and +2 GeV'
is obtained. The scale of energy is established by giving the p resonance the physical mass; the self-con-
sistent p width is then about 400 MeV. Various dynamical approximations are investigated, and it is shown

explicitly that the pion mass is not a significant parameter of the dynamics. Finally, a bootstrap calculation
of both the p and Pomeranchuk trajectories is presented. Except for the Pomeranchuk residue, the results
show satisfactory self-consistency throughout the range —1 to +2 GeV'. The self-consistent Pomeranchuk
trajectory has an intercept nz (0) = 1 and a slope np'(0) =0.5 GeV '. The inclusion of Pomeranchuk exchange
increases the slope of the p trajectory, but the effect of this on the p resonance width is oRset by a more
rapid increase in the imaginary part of the trajectory, and the self-consistent p width is now about 600 MeV.
In contrast to the more encouraging consequences of including Pomeranchuk exchange in recent E/D cal-
culations, these results suggest that the physical p is in fact primarily a bound state of some channel other
than mm. .

I. INTRODUCTION

S INCE the introduction of the bootstrap hypothesis'
about ten years ago, much effort has been devoted

to dynamical calculations based on approximate
bootstrap schemes. ' ' In these calculations, the hypoth-
esis is that one may obtain an approximation to the
physical 5 matrix, for a limited number of channels, by
constructing self-consistent, unitary amplitudes in
which the effects of other channels are taken into
account in some crude but phenomenologically plaus-
ible way. For example, in the strip approximation to m.x
scattering, ' a certain class of multipion contributions
are included in detail, and the effects of channels con-
taining particles other than pions are represented by
a cuto6 prescription.

The technique most frequently used in bootstrap
calculations has been that of the N/D equations of
Chew and Mandelstam. ' This method has the advantage
that the complicated unitarity conditions are reduced
to linear integral equations, which present few com-
putational problems. However, the most interesting
calculations involve the bootstrapping of Regge poles,
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which appear as zeros of the D function. The numerical
problem of locating these zeros at complex values of the
angular momentum is not easily solved, and it has not
so far proved possible in N/D bootstrap calculations to
follow the output Regge trajectories above threshold,
where they of course become complex.

A second technique, proposed rather earlier than the
N/D method, involves the use of the Mandelstam
iteration. In this procedure, unitarity is imposed
through the iterative evaluation of nonlinear, singular,
double integrals. In spite of this forbidding numerical
prospect, the technique has received some attention. ' "
It has conceptual, if not mathematical, simplicity, and
it turns out that the real and imaginary parts of the
leading Regge trajectories and their residues are easily
computed above threshold. Some more technical prob-
lems of the N/D method, such as those associated with
repulsive potentials like that due to Pomeranchuk
exchange, " are also circumvented. These difficulties
are associated with the fact that the input to the N/D
equations should in any case be unitarized by means of
the Mandelstam iteration. " If this is not done, the
solution may contain "ghosts" (resonances with
negative widths). The Mandelstam iteration technique
is equivalent to an cV/D calculation in which the input
is treated with very high precision, and cannot give rise
to ghosts.

It appears, then, that the Mandelstam iteration,
as a basis for bootstrap calculations, has languished
rather because of numerical difhculties than on account
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of any dynamical inadequacies. Considerable progress in
the solution of these numerical problems was made by
Bali, ' who showed that results of adequate precision
were obtained from a computer program that applied
the Mandelstam iteration to nonrelativistic potential
scattering, Bali also found that the method, with a
particular cutoff prescription, "gave interesting results
in relativistic calculations.

In this paper we report further progress in the
numerical implementation of the Mandelstam iteration,
made possible by the development of a new computer
program that operates between five and ten times faster
than those used in earlier calculations. This speed per-
mits the laborious parameter searches inherent in
bootstrap calculations to be carried out without exces-
sive use of computer time, and so it has become pos-
sible to apply this technique to the controversial z7f.

bootstrap problem.
A variety of bootstrap techniques have been applied

to the problem of calculating the ~7i- scattering ampli-
tude, generally with limited success. If only the I= 1. m.~
channel is included, then a p-wave resonance can be
bootstrapped, but its width is typically two or three
times larger than that of the observed p resonance. This
difficulty has persisted even in the most sophisticated
single-channel calculations. ' At the same time, studies
of more massive channels, such as men, EE*, and EE
have suggested that these channels do make large con-
tributions in the formation of the p,

" and that this
particle should be regarded as predominantly an SE
bound state. "However, recent calculations by Collins
and Johnson' ' have disrupted this interpretation,
since they appear to show that the proper inclusion of
the I=0 ~m. channel suffices to reduce the p width to the
observed value. Their prescription for the I=0 scatter-
ing involves the exchange of the Pomeranchuk trajec-
tory, which is treated as an ordinary Regge trajectory
with an intercept nr (0)= 1.

Our approach to this problem has been, like that of
Collins and Johnson, within the framework of the strip
approximation. In Sec. II we set out the notation and
assumptions of this approximation, which we use in

Sec. III in a bootstrap calculation of the p trajectory.
The results are similar to those of earlier calculations,
although our technique allows us to impose strict re-

quirements of self-consistency above threshold and, in

particular, to arrive at a self-consistent value of the p

width. The effects of various approximations are rela-

tively easy to interpret in this simple one-trajectory
calculation, and we study these effects in some detail.
In Sec. IV we include the I=0 ~~ channel in a bootstrap
calculation of the p and Pomeranchuk trajectories. We
observe no tendency for the p width to be reduced by
the inclusion of Pomeranchuk exchange. In Sec. V we
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(1966)."J.S. Ball and M. Parkinson, Phys. Rev. 162, 1509 (1967).
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summarize the results and discuss the disagreement
between our observations and those of Collins and
Johnson.

II. STRIP APPROXIMATION

We assume that the reader is familiar with the
phenomenological arguments in favor of the strip
approximation'; in this section we simply set down the
equations that define the model, with only the briefest
comments on their plausibility.

The Bose-symmetrized s-channel ~m scattering ampli-
tude with isospin I, A, (s,t,u), may be written in the
form

A, '(s, t,u) =A'(s, t)+(—1)'A'(s, u), (2.1)

where Ar(s, t) is an amplitude of definite signature,
having only right-hand singularities in the t plane. The
normalization is such that the s-channel differential
cross section is

do-' 4z—= —~A, r(s, t,u) ~',
dt sq, '

(2.2)

where q, = 2 (s —4m ')'t' is the s-channel c.m.
momentum.

The first assumption of the strip approximation is
that an amplitude of definite signature has double-
spectral functions that are nonvanishing only in the
strip regions A, B, C, and D of Fig. 1.Furthermore, it is
assumed that the contribution of the shaded region A is
given by the following s-channel elastic unitarity
equation:

p..i'(s, t) = C(s)

&ass 4m~
s/a

D, '*(ti,s)D, '(t2, s)
dtid4 —,(2.3)

E'"(s; t, ti, t2)

prr pout (u pt)

+—du', (2.5)

where
1 p; r'(t, s')

V,r(t, s) =Q Prr — ds'
I' 7r s —s

(—1)'
+

p;„'(t,u')
dm

Q —Q
I

(—1)'+' p; r'(u', t)
+ P prr —— du' (2—6)

I'QI 7r 8 —II

Here prr is an isospin crossing matrix element, and

where

It (s; t, ti, t2) =t +tp+t2 2(tti+tt2+—tit2) —ttito/q, , (2.4)

and the t discontinu. ity of the amplitude D, (t,s) is

given by
1 ..p(sir', t)

D, '(t, s) = V ir(t, s)+ — ds'
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over some limited range of s. Here 6, represents the dis-
continuity across the cuts associated with the s-channel
threshold branch points. If these self-consistent tra-
jectories resemble the observed ones, the amplitude
will have the correct principal low-energy resonances
and the correct behavior near the forward direction at
higher energies, which would account for most of the
features of the experimental data. However, we can
hope to find such a solution only if the dynamics of
xx scattering are primarily determined in vrz channels,
because the cutoff prescription is too crude to represent
in detail any important contributions from other
channels.

FIG. 1. The regions of the double-spectral functions that are
taken into account in the strip approximation to ~~ scattering,
and the cutoff and threshold parameters s, and t,.

alid

where

p; (s,t) —t),{p; (s)t '"")
g -woo

p I(s t) ~ Q {p I( )t~ su4 (o+) )
g moo

(2.8)

n; r(s)= ,n«(r)sand P;„r(s)=P,«r(s) (2.9)
"D. Amati, S. Fubini, A. Stanghellini, and M. Tonin, Nuovo

Cimento 22, 569 (1961);L. Bertocchi, S. Fubini, and M. Tonin,
ibid. 25, 626 (1962); D. Amati, A. Stanghellini, and S. Fubini,
ibid. 20, 896 (1962).

g(s) is a cutoff function" which forces the function
p,«r(s, t) to vanish above the upper boundary s=s,
of the strip A. This is not otherwise ensured by the
equations, so the cutoff is assumed to represent some
influence of other channels that causes the interior
parts of the double-spectral functions to be negligible.
The interpretation of Eqs. (2.3)—(2.6) is as follows: One
starts with input double-spectral functions p;„r(s,t),
for I=0, 1, and 2, which specify a potential according
to Eq. (2.6). This potential may be used in Eqs. (2.3)
and (2.5) to generate the output functions p,«r(s, t),
by means of the Mandelstam iteration procedure. In
principle, one has only to find a set of functions pr(s, t)
such that

p;„'(s,t) =p.„,'(s, t) =p'(s, t),

for all s, t, and I, in order to have arrived at a complete
solution of xm. scattering within the limitations of the
strip approximation. The amplitude generated is not
simply elastically unitary, since, for example, the strip
8 makes a contribution that represents a certain class
of multipion unitarity contributions, namely, those that
have a t-channel elastic intermediate state. In this
respect the vr7r strip model bears a strong resemblance to
the type of multiperipheral model proposed by Amati,
Bertocchi, Fubini, Stanghellini, and Tonin. "

The goal of satisfying Eq. (2.7) at all s, t, and I is
at present too ambitious, and in practice one attempts
only to find functions containing the same leading
s-channel Regge poles for some limited region of s:

III. y BOOTSTRAP CALCULATION

For our 6rst 7rm bootstrap calculation we perform the
standard single-channel calculation of the I=1 ampli-
tude. The input potential will involve the exchange of
the p Regge trajectory, which is well known to provide
the dominant forces in this system. However, p exchange
also gives rise to strong forces in the I=0 direct channel,
and thus for real self-consistency one should include
some I=0 input; we shall do this in Sec. IV.

We assume for the input double-spectral function
p; '(s, t) a simple form that has a leading Regge tra-
jectory n(s) with residue p(s):

p'-'(s, t) =t).{P(s)L(t+2C')/so] "}tti(t.,~,t), (3 1)

where so is the conventional Regge scale factor of 1 GeV',
and ei(t, ,t),t) is the following continuous "effective
threshold function":

8)(t„h,t) =0,
=-', $1+(t—t,)/aj, t, a&t&t.+a —(3.2)
=1 t&~ t,+t) .

The effect of the cutoff function 8~ is to approximate the
curved boundary of the physical double-spectral func-
tion by a straight boundary near t =t„as shown in
Fig. 1. We therefore regard t, as a free parameter,
representing the effective inelastic threshold of the
potential, which may be varied to improve the self-
consistency of a bootstrap solution. The function of the
small parameter 6 is to remove a logarithmic singu-
larity that would appear in the potential at s=t, if
the double-spectral function were discontinuous. One
finds, on substituting the form (3.1) in Eq. (2.6), that
the potential is given by

p(t) -r.(t)-.(')
V, '(t, s) =hi

2m $0

s+2qP 2A
X~ ()) i (3 3)

- r.(t) .(t)-
where r, (t) = t,—6+2qP; the function R (x;e) is
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defined by the relation

where
1 1

R+(x)= dyy
~

ky —x y+x

R +(x; e) = — R +i+(x) —R +(x)

(3.5)

There are eight parameters to be varied in the search
for a bootstrap solution: a„b, c, p, g„c„$,& and ~, .
We did not vary the cutoff width parameter 5, since
the dynamics are quite insensitive to its value, which
we fixed at 0.5 GeV'. For given values of the parameters,
the Mandelstam iteration is carried out and the
discontinuity D, '(t,$) is computed at successively
higher values of t. Eventually the Regge asymptotic
behavior becomes apparent:

D '(t $) —f'- ($)H'+29 ')/$o]"""' (3 1-')
g "oo

R.-(x) =xR. i+(x), (3 7)

which permits the definition of the potential through
analytic continuation for all s and t. In the limit 6~ 0,
we have e —& 0 and R +(x; e) ~ R ~(x); the potential
is then logarithmically singular at s = t, . A 6nite value
of 6 removes this singularity, and the potential is then
continuous throughout the neighborhood of s=t, .

We parametrize the leading trajectory n($) and its
residue P($) in the following way:

n($) =a„+b$+c(4m.' $)', — (3 g)

P($) =g,c, "8s($„6,$)/I'[u($)], (3.9)

where 8s($„5,$) is a cutoff function with a continuous
derivative,

8s($„~,$) =1, $~( sc—6
=—,'(2+($—$,)[($—$.)'—3~ ]/~'),

$.—A&$&$.+~
$-&$,+~. (3.10)=0 )

We use this cutoff function, rather than one similar to
that in Eq. (3.2), because the numerical details of the
Mandelstam iteration make it desirable that the poten-
tial should be fairly smooth in t. By choosing

g($) =8s($,6,$) (3.11)

in Eq. (2.3), we ensure that the strip width is the same
for the input and output double-spectral functions.
Apart from this cutoff factor, the form of the residue in

Eq. (3.9) is just that given by the asymptotic form of
the Veneziano formula for xx scattering. ' We take c,
to be a free parameter, although one might suppose that
the Veneziano formula suggests the value cp n'sp,

where n' is the mean trajectory slope. This would not
be correct, because we ought to use only the s-channel
elastic contribution, rather than the complete Veneziano
term, for the input potential. The value of c, is therefore
expected to be less than n'so, corresponding to an elas-

ticity that decreases with increasing s.

"J.A. Shapiro, Phys. Rev. 1'79, 1345 (1969).

This integral may be expressed in terms of the hyper-
geometric function

R+(x) = —(2/n)F(1, ——,'n;1 —-'n x') (3.6)

[cf. Eq. (3.1)], and the leading output trajectory
n, „&($) and its residue P,„i($) may be found by making
least-squares linear fits to 1nagl as a function of
in[(~+2q, ')/$s]. We find that local duality" holds in
this situation, in the sense that these linear fits, ex-
trapolated downward from very large t, also describe
the average behavior of lnD&~ in the intermediate
energy range (2&t&20 GeV'). Conversely, a least-
squares linear fit over an appropriate intermediate
energy region, where lnB, I may still exhibit pronounced
oscillations, gives a good representation of the asymp-
totic behavior. It is usually possible, therefore, to
determine the output Regge pole parameters in this
intermediate t region, corresponding to 15—25 Mandel-
stam iterations, and to avoid making the very large
number of iterations, typically 50—70, necessary to
reach the truly asymptotic t region. " An example of
our procedure is illustrated in Fig. 2.

We chose to impose self-consistency on the p trajec-
tory and residue in the region of $ from —1 to+2 GeV',
since one could not reasonably expect the strip approxi-
mation to be valid outside this range. In this region, a
value of X' is computed for the consistency of the input.
and output values of Re(n), Im(u), Re(j'), and Im(P).
The X' contributions of the trajectory and the residue

4—

2—

-2 l l

-2 0 2 4 6
A~(t/1GeY )

FIG. 2. Examples of the 6tting procedure used to compute the
parameters of the leading output Regge trajectory. The dashed
lines indicate the least-squares Gts and the regions of t that were

used, for the two cases s=0 and s=2 GeV'. In this example the
slope and intercept of the linear fit give the values of Re+, and
in ~8, ~

at that value of s. The maximum value of i used in these
its (t=42 GeV') corresponds to 22 Mandelstam iterations.

R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1'?68

t 196S).



are weighted according to their expected relative
nulTI. erical plcclsloQ; lt tuI'ns out that the residue 18 R

good deal less accurately determined than the trajec-
tory, so it receives less weight. A minimization program
directs a parameter search that leads to the solution
with the minimum value of X'.

The requirement that the real and imaginary parts
of the trajectory and residue should be self-consistent
above threshold is a very strict one that has not been
lmposcd ln Rny othcl bootstI'Rp CRlculRtlon. In thc p
bootstrap of Collins and Johnson, ' for example, the
inconsistency above threshold must be very great,
since the widths of the input Rnd output p resonances
diRer by a factor of at least 2. It is therefore not dear
from earlier calculations that a p resonance of any
self-consistent width can be. generated.

%e do in fact find a, solution with fairly good self-
consistency throughout the region of interest, which
is shown in Fig. 3. In vievr of numerical erroIs of about
20% in the calculation of the residue function, the con-
sistency is good below 1 GCV', although above this
vahlc thcI'c ls R slgn16cant tcndeQcy foI' thc output
value of Re P to decrease less rapidly than the input.
There is a corresponding tendency for the output
value of Im 0, to rise rather too ra,pidly.

Kc do not And Rny solution tha, t differs vcxy much
from that in Fig. 3; for example, the intercept of the
self-consistent trajectory appears to be limited to the

"E
too—

.80-
Ag.

60-
C

f

0 O.P. 0,4 0.6 0.8 LO I.R IA

+s {GeV)

FIG. 4. Input (dashed line) and output (solid line) isovector
P-wave cross sections, corresponding to the solution shown in
Fig. 3. The input p resonance has m, =0.765 GeV, I', =0.410 GeV,
and the output has nz, =0.720 GeV, I', =0.415 GeV.

range 0.60&n(0)&0.75. This represents a considerable
improvement in uniqueness over earlier p bootstrap
calculations, presumably because of the requirement of
consistency above threshoM.

The isovector, P-wave cross section, corresponding
to the solution in Pig. 3, is shown in Fig. 4. The con-
sistency of input and output is good, but the p is wider,
by a factor of about 3, than the experimentally observed
resonance. As vre discussed in Sec. I, the large width of
the output p resonance has always been a problem in
single-channel ~x bootstrap calcu1ations, and by in-
creasing the input width to achieve consistency we have
not recti6ed this.

Our technique of calculation has some disa, dvantages
if one needs to evaluate amplitudes and cross sections,
because we can at present identify only the leading
term in the asymptotic behavior of D~r(t, s), that is, the
leading output Rcgge po1e. In calculating the amplitude„

Dg'(f, s)4 (3.13)

Rep

Imp
l l

-I,O -0.5 0 0.5 I.O I.5 2.0
s {GeV~)

Fxo. 3. The self-consistent p trajectory e($) and its residue
function p(g). The input is shorn by the dashed lines and the
output by the full lines. Input parameter values were e, =0.63,=122 GeV 2 c=0.92 GeV ~" P=1.11» go=63.4~ c~=0.091
s =3.64 GeV~, t, =2.73 GeV' 6=0.5 GeV~.

it is necessary to know the locations and residues of
alI poles in the right half of the angular momentum
plane. However, insofar as the amplitude calculated
according to Eq. (3.13), taking into account only the
leading Regge pole, lies on the unitary circle, we may say
that we see no evidence of important secondary pole
contributions for s&2 GCV'.

Figure 5 shows how some representative output
quantities depend on the cuto8 and threshold param-
eters s, and t„when the other input paraxneters are
held constant. Since I, Rejects only the nonresonant
contribution to the potential, which is dominated by
the resonant p contribution, there is little sensitivity
to the value of this parameter, and in fact we did not
vary it in the search for a bootstrap solution, but held
it constant at the value 2.'l3 GeV' (=150 re ').

The sensitivity to the cutoB parameter s„on the
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other hand, is pronounced. This is reasonable, because
the cutoff represents two important effects, which are
presumably associated in the real world with inelastic
channels not present in our model. The first of these
is the elimination, through the function g(s) in Eq. (2.3),
of Regge-cut contributions. This mechanism is discussed
in detail in Ref. 13. The second effect is the decoupling,
in Eq. (3.9), of the high-spin part of the input trajectory,
which would otherwise play an unreasonably large role
in the dynamics, even in the presence of the rapidly

1.2

0.8—
O

0,4—

0.8
O

0.4-

ptpl

0 I I I

0 0.05 0.10 0.15 0.20
m (GeV}

FIG. 6. Dependence of the output values of n(0), Rem(0. 5 GeV'),
and P(0) on the pion mass. The input values are shown by the
dashed lines, and correspond to the input parameter values given
in the caption to Fig. 3, apart from negligible changes due to the
shift in the ~m. threshold.

0 I I I I

0 2 4 60 2 4 6
s~ (GeV~} tc (Gev }

FIG. 5. Dependence of the output value of the three representa-
tive quantities o. (0), R~(0.5 GeV'), and P(0) on the parameters
(a) s, and (b) t, . In each case the remaining input parameters had
the values given in the caption to Fig. 3, and the dashed lines
indicate the corresponding input trajectory and residue values.

decreasing elasticity factor c, . One may of course
achieve the same effect by arranging for the input
trajectory to turn over at some small value of n, but
we have not chosen this scheme, because it would
require much more elaborate parametrizations of both
the trajectory and residue functions. However, the
output trajectory does in fact turn over in the upper
half of the strip, so the output residue is not required to
fall rapidly in order to decouple high output spins.
This is probably the source of the disagreement of the
input and output residues at high s, which may be seen
Ill Flg. 3.

The magnitude of the pion mass is of crucial im-
portance in the Mandelstam iteration procedure, since
the number of iterations required to continue the
double-spectral function to a given value of t is in-
versely proportional to this quantity. One might
suppose, therefore, that the scale of energy in our
calculations is set by the pion mass, which would then
be a dynamical quantity of great significance. Figure 6
shows that this is not the case. For given input param-
eter values, the output is largely insensitive to the
pion mass, provided this is less than about 0.2 GeV. Of
course t.he Mandelstam iteration becomes numerically
unreliable if the pion mass is too small, owing to the
large number of iterations required to reach the region
of large t. The apparent variation in the output below

m =0.08 GeV can be ascribed to numerical difficulties
of this type. On the other hand, there does appear to be
an onset of significant variation around m =0.18 GeU,
corresponding to the vrx threshold lying one full width
below the p pole. Presumably a more realistic calcula-
tion, with a narrower p resonance, would show no varia-
tion up to even larger values of the pion mass. These
considerations suggest that, although the nonzero pion
mass is an important kinematic feature that makes the
Mandelstam iteration possible, its neglect does not lead
to any significant distortion of the dynamics of xx
scattering.

A direct result of the insensitivity to the pion mass is

the existence of a continuum of bootstrap solutions,
related to the one in Fig. 3 by a change in the energy
scale of the input parameters. We have fixed this scale

by setting the input p mass at approximately the
physical value. When the resonance width is large, this
does not correspond to the condition Ren(m, ') = l, but
to a more complicated condition given, for example, by
Newton. "

The dynamical effects of the strip labeled D in Fig. 1

are expected to be small in the region s& —1 GeV',
because the potential contribution of this strip con-
tains no resonances at low t and behaves like t & '& at
high t. In a single-channel calculation, the strip D
contribution enters only as the last term in Eq. (2.5),
and in Fig. 7 we show that the effect of neglecting this

"R. G. Newton, The Consptex J-I'lane (Benjamin, New York,
1964), p. 9.
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term is indeed small. In a two-channel calculation, with
both I=O and I=1, strip D contributions also occur
in Eq. (2.6), where they have to be computed in terms
of the input double-spectral functions p;„~(s,t) If .these
contributions are to be included, our input trajectory
parametrization must be modified, because the form
(3.8) gives n( —t) ~+ ~ as t —+ ~. However, we take
the evidence of Fig. 7 to indicate that all strip D con-
tributions are negligible, and in the two-channel
calculation of Sec. lV we shall omit them altogether.

IV. INCLUSION OF POMERANCHUK
TRAJECTORY

A simple inspection of the m.m isospin crossing matrix
reveals that p exchange produces a strong attractive
force in the I=O direct channel, and this force gives
rise to a high-lying output trajectory with the quantum
numbers of the vacuum. We display in Fig. 8 the posi-
tion and residue of this Pomeranchuk trajectory for the
pure I= 1 input of the p bootstrap calculation discussed
in the previous section. The trajectory is roughly
parallel to the output p trajectory, with very nearly the
same imaginary part for s(2 GeV', and with an inter-
cept of about 1.The residue function has the same form
as that for the p, but is about twice as large.

Since the potential is expected to be dominated by p
exchange, the output Pomeranchuk trajectory should
be similar to that shown in Fig. 8 even when Pomer-
anchuk exchange is included in the input. Accordingly,

1.4

1.2

2.0

1.5

I,O

Re a
20 IL "~
15-

)0-

0.5

0
-10 0

-5
1.0 2.0 "I.O

s(GeV~)

l

0 1.0 2.0

Fzo. 8. Output Pomeranchuk trajectory and residue
generated by the I=1 input of Fig. 3.

we have chosen the following parametrization of the
input Pomeranchuk trajectory and its residue, corre-
sponding to Eqs. (3.8) and (3.9) for the input p:

ep(s)=ap+bs+c(4m ' s)", —

pp(s) =gpcp p&'&02(s„,A,s)/rpnp(s)],

(4.1)

(4.2)

where the parameters b, c, p, s., and A are the same as
those for the input p trajectory. The I=0 contribution
to the potential then has a form similar to that given
by Eq. (3.3), with the positive-signature function
E p+ in the place of E

There are now 11 input parameters, namely, a„aJ,
b, c, p, g„gp, c„cp, s„and t„s ubject to the single
constraint that the p resonance should have the physical
mass. Figure 9 shows the most consistent solution that
we have found using this parametrization. The agree-
ment between input and output p and Pomeranchuk.
trajectories is good throughout the range —1(s(2
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FrG. 7. Effects of neglecting the contribution due to strip D of
Fig. 1.The input was as in Fig. 3;output with strip D contribution
is the solid line, without strip D contribution is the dashed line.
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Fxo. 9. Self-consistent p and Pomeranchuk trajectories and their
residue functions. The input is shown by the dashed lines and the
output by the solid lines. Input parameter values were u, =0.59,
ap ——0.95 b=1.45 GeV-', c=1.15 GeV '& p=1.136, g, =33.2,
gp = 101.0, c~=0.22, cp =0.135, s,=2.8 GeV', tf, =2.1 GeV',
6=0.4 GeV'.
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Fxo. 10. Real parts of the
output trajectories of Fig. 9,
including the turnover be-
havior at large s, where self-
consistency was not required.
The full strip width is s,+4
=3.2 GeV' and the maxima
of Reo.y and Reo, , occur at
s=2.5 GeV' and s=2.6 GeV',
respectively.
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FIG. 12. Behavior of the
output quantities n~ (0),
Re, (0.S Gev'), and P, (O)
when the amount of Pome-
ranchuk exchange is varied.
All input parameters except
gp&were held constant at the
values given in the caption
to Fig. 9.

GeV2, and the consistency of the p residue is rather
better than in the single-channel calculation of Sec, III.
However, even allowing for a 30% numerical uncer-

tainty in the Pomeranchuk residue, the self-consistency
of this quantity is unsatisfactory for s&0.5 GeV'.

The discrepancy between the input and output
Pomeranchuk residues above s=0.5 GeV' rejects a

difhculty of the strip approximation which we do not
believe to be caused by our particular form of param-
etrization. For a wide variety of physically reasonable
input potentials, the output Pomeranchuk residue falls
rather slowly at large s, while the real and imaginary
parts of the trajectory rise su@.ciently rapidly that
there is a significant f-meson contribution to the output
cross section. This is true even though the real part of
the trajectory turns over, as shown in Fig. 10, before
reaching the value Re(np) =2. Correspondingly, if the
input and output trajectories and residues are to agree
up to s=2 GeV', there must be a large f-meson con-
tribution to the input potential. As in potential scatter-
ing, such a high-mass exchange (short-range potential)
generates output trajectories that are much too Oat
to bear any resemblance to those observed experi-
mentally. The f meson must therefore be decoupled

by an input residue that falls rapidly at large s, and we

have the residue discrepancy that appears in Fig. 9.
Alternatively, the f contribution may be removed by
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Fzo. 11. Input (dashed line) and output (solid line) isovector
p-wave cross sections corresponding to the p trajectory and
residue shown. in Fig. 9. The large width and asymmetrical shape
of the p resonance make its parameters dificult to determine,
The input has nz, =0.76 GeV, I', =0.6 GeV, while the output has
ns, =0.71 GeV, I',=0,6 GeV.
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making the input trajectory turn over at small s, but
this leads to a comparable inconsistency with the
output trajectory above s=0.5 GeV'. Clearly, this is
another case of the problem of decoupling high-spin
input contributions, as discussed in Sec. III. The
problem is more serious here simply because the f
resonance shouM in fact occur within our region of
interest, s&2 GeV'.

The slope of the output p trajectory near s=0 is
similar to the observed value n, '(0)=0.9 GeV ' but
this is largely due to a threshold eAect associated with
the rapidly rising imaginary part of the trajectory.
Above threshold the slope remains slightly greater
than that obtained when Pomeranchuk exchange is
ignored„but the effect of this on the width of the p
resonance is overwhelmed by the increase in the
imaginary part of the trajectory. The p-wave cross
section, shown in Fig. 11, reveals that the p width is
now about 600 MeV,

In Fig. 12 we exhibit the relevant behavior of the
1=1 output as the amount of input Pomeranchuk
exchange is increased from zero. The trajectory inter-
cept falls steadily, while the value of Reo.,(0 SGeV').
is not substantially changed, so the real part of the
output trajectory approaches a form with the physical
slope and intercept. But the residue increases rapidly,
not only for s=0 (the representative value shown in
Fig. 12) but also for s)0, where a corresponding in-
crease in Im o. produces the large width of the output
resonance. " In contrast to these observations, Collins
and Johnson found in their S/D calculations' ' that the

~0 These effects are not in conflict with the argument, given by
G. F. Chew /Phys. Rev. 140, 81427 i1965)g, that Pomeranchnk
exchange should lead to resonance narrowing. In our calculation
the self-consistent Pomeranchuk residue is slowly varying near
s=0, and this produces a broad diffraction peak and a repulsive
potential of correspondingly short range. While the long-range
repulsion associated with the experimentally observed narrow
diAraction peak can lead to resonance narrowing, the short-range
force generated in our calculation cannot.
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inclusion of Pomeranchuk exchange led to a decrease in
the p residue and to an associated reduction of the
resonance width to the experimentally observed value.

Next we turn to a comparison of the self-consistent
Pomeranchuk trajectory with the experimental data.
The intercept o.i (0)=1 and the slope nr'=0 5G. eV ',
throughout the region —0.5 GeV'&s&0, are in agree-
ment with the values suggested by the recent Serpukhov
pp scattering data."The value of the residue at s=0,
however, corresponds /when we take np(0) —1j to ail
asymptotic ~x total cross section of 46 mb, whereas
the estimate by factorization of the wp and pp data is
15—20 mb.

Chew and Snider" have conjectured, on the basis of
their "schizophrenic Pomeranchon" model, that a
calculation of the type presented here should give rise
to a degenerate leading I=O trajectory, which will be
split in a more sophisticated scheme (involving small
potential contributions not confined to the strip regions
of Fig. 1) into two components corresponding to the
physical I' and I" trajectories. In order to split into
I' and I" components with the observed properties,
the degenerate trajectory should have an intercept of
about 0.7, the normal slope (=0.9 GeV '), and a large
residue (about twice that of the I' component). Al-
though we find that the residue has roughly the ex-
pected size, the trajectory slope and intercept are more
like those of an already split P component. In view of
our poor results on the p trajectory, which is not subject
to such CGects, this probably casts more doubt on the
validity of the present form of the strip approximg, tion
than on the conjecture of Chew and Snider.

Our results on the intercept and residue of the
Pomeranchuk trajectory are similar to those of Collins
and Johnson, but they arrived at a higher, more
normal, value of the slope, 0.~'=0.9 GeV'. They saw no
sign of a secondary P' trajectory, as one would expect
if their leading trajectory was degenerate.

As explained in Sec. III, out technique is not directly
sensitive to secondary output trajectories. However,
if one tries to use Eq. (3.13) to compute the isoscalar
amplitude, subtractlIlg out only thc lcadlllg Rcggc pole
on the right-hand side, one obtains an absurd result
that appears to violate unitarity. This suggests the
presence of a secondary pole with a positive intercept,
and it is possible that further work along these lines
will enable us to obtain quantitative information on
secondary contributions of this type. In the meantime,
we have no way of evaluating the isoscalar amplitude
and, in particular, we are not able to compute an
I=O, l=0 scattering length for comparison with the
encouraging results of Collins and Johnson.

s' G. G. Beznogikh, A. Buyak, K. I. Iovchev, L I". Kirillova,
P. K. Markov, B.A. Morozov, V. A. Nikitin, P. V. Nomokonov,
M. G. Shafranova, V. A. Sviridov, Truong Bien, V. I. Zayachki,
N. K. Zhidkov, L. S. Zolin, S.B.Nurushev, and V. L. Solovianov,
Phys. Letters 303, 274 (1969}."G.F. Chew and D. R. Snider, Phys. Rev. D 1, 3453 (1970).

I"io. 13. Input (dashed
line) and output (solid line)
p trajectory and residue
functions in the region of
negative s. The numerical
errors in this region are
large, and no attempt was
made to obtain self-con- .

sistency there, but the fact
that the output residue re-
mains large when the tra-
jectory passes through zero
is signi6cant.

As in the p bootstrap calculation of the previous sec-
tion, there is in this case only a small range of solutions
that are roughly as good as the one displayed in Fig. 9.
Ke have not found any self-consistent trajectories with
intercepts outside the ranges 0.55&u, (0)&0.70, 0.90
&nr (0)&1.05; for solutions with intercepts within
this range, we find 11&Pi (0)& 17.

VVC end this section with a brief discussion of the
behavior of the p residue function near the wrong-
signature point 0,,=0. In Fig. j.3 the trajectory and
residue of Fig. 9 are extended into the region s& —1
GeV', where no attempt was made to achieve self-
consistency. The numerical errors are large in this
region, because the asymptotic value of DP (t,s) there is
very small compared with values in the strip region A.
However, it is clear that the output trajectory passes
through zero somewhere near s= —1.7 GeV', while the
residue shows no sign of vanishing or even becoming
small around this value of s. In other words, we detect
no tendency for the dynamics to generate a zero of the
output residue, and this of course precludes any possi-
bility of self-consistency in this region, since we have
used an input residue parametrization that does contain
this zero. One might suppose that this difhculty causes
reduction of the slope of the self-consistent p trajectory,
by forcing the point 0.,=0 to lie outside the region
(s) —1 GeV') in which consistency is demanded. But
we 6nd that ignoring the residue inconsistency, or
requiring consistency only for s& —0.5 GeV', leads to
little change in the trajectory slope, which is therefore
not seriously constrained by this effect. Certainly our
calculation would be more satisfactory if we could find
a simple input p-residue parametrization that does not
vanish when 0.,=0 but does lead to some self-consistent
bootstrap solution. So far, however, we have not been
able to do this, and, in any case, it appears unlikely
that such a modi6cation would remedy the basic
problem of the large width of the p resonance.

V. CONCLUSIONS

In the preceding sections we have shown that the
Mandelstam iteration is a useful technique for perform-
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ing detailed bootstrap calculations, and that it supple-
ments the S/D method by providing valuable informa-
tion on Regge trajectories above threshold. We have
used the technique, in conjunction with the strip
approximation, to carry out first a bootstrap calculation
of the p trajectory alone, and then a combined bootstrap
of the p and Pomeranchuk trajectories. We begin this
section with a summary of the results of these
calculations.

In the p bootstrap calculation there does exist a
solution with satisfactory self-consistency in the region
—1(s(2 GeV', but the trajectory slope is too small
and the p resonance is about three times too wide. The
strip width is an important parameter and has the
value 3.64 GeV'. If the strip width is increased, large
contributions of the high-spin parts of the input
trajectory are introduced. It does not seem possible to
incorporate highly elastic high-spin resonances in the
present formulation of the strip model, and problems
associated with the existence of such resonances, like
the g(1660), seem likely to occur in a large class of
models. "

When Pomeranchuk exchange is included in the
calculation, both the p and Pomeranchuk trajectories
may be made reasonably self-consistent in the range
—1(s(2 GeV', except for some inconsistency in the
Pomeranchuk residue at positive s, which is associated
with the high-spin resonance problem again, this time
in connection with the f-meson contribution. The slope
of the p trajectory is slightly greater than in the calcula-
tion without Pomeranchuk exchange, but this is onset
by a more rapid increase in the imaginary part above
threshold, which leads to an even greater width for the
p resonance.

The slope and intercept of the self-consistent Pomer-
anchuk trajectory are in agreement with experiment,
but the residu, e is too large, and it appears likely that a
valid strip approximation should in fact generate a lead-

ing I=O trajectory with just such a large residue, but
with a normal slope and an intercept of about 0.7, which
would be split by nonstrip effects into the observed I'
and P' trajectories. We have to conclude that the
addition of the I=O xx channel to our original single-
channel calculation has not significantly increased our
understanding of the details of mx scattering.

The most natural conclusion from this rather dis-

"P. D. B. Collins, R. C. Johnson, and E. J. Squires, Phys.
Letters 268, 223 (1968).

appointing result is that xx scattering dynamics cannot
in fact be understood in terms of the xm channels alone.
The large width that is obtained for the p suggests that
this particle is in large measure a bound state of some
channel of higher mass, such as ÃX. Furthermore, the
rather unsatisfactory way in which the cutoG prescrip-
tion deals with the problem of high-spin resonances
suggest that at least some of the inelastic effects, which
the cutoff represents, must be handled explicitly
through the inclusion of inelastic channels.

The bootstrap calculations of Collins and Johnson' '
are based on a formulation of the strip approximation
that is very similar to ours, and, apart from some
details due to the different parametrizations and regions
of self-consistency, one would expect our results to be
much the same as theirs. In the p bootstrap calculation
this is indeed the ease. '4 However, as we have pointed
out in Sec. IV, on including Pomeranchuk exchange we
obtain substantially diferent results, for their solution
displays many features of the experimental data, and,
in particular, they find that the p resonance width is
reduced to the physical value.

At present the reasons for this discrepancy remain
obscure. I.yth" has argued that certain features of the
results of Collins and Johnson suggest that the physical

p should appear as a Castillejo-Dalitz-Dyson (CDD)
pole in their s.vr X/D equations. This would support our
characterization of the p as primarily a bound state of
some other channel. However, Bali, Chew, and Chu"
have shown that the type of calculation presented here
should be equivalent to an E/D calculation with no
CDD parameters. For this reason, independent of the
true nature of the p, one would expect the two calcula-
tions to give similar results.
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~One should notice that the strip width, in the sense of the
width of the regions outside which the double-spectral functions
are negligible, is determined in the Collins-Johnson calculations
by the parameter they call I, , which has a value of 2—3 GeV', in
agreement with the value of our parameter s,. The parameter s1,
which they refer to as the strip boundary, serves mainly as a point
of transition from the low-energy to the asymptotic region.

"D.H. Lyth, this issue, Phys, Rev. D 3, 1991 (1971).


